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limiting high temperature value of the ys more 
slowly than y. Of course this theorem leads one 
further to anticipate that y" for copper and 
aluminum should not be independent of tem­
perature in the entire range in which this holds 
for y. For the alkali halides for which BARRON 

et al. (21) have proved the accuracy of the quasi­
harmonic approximation to the thermal thermo­
dynamic functions at moderate temperatures, one 
would again expect that y at atmospheric pressure 
should not vary significantly with temperature in 
a region around and below the pertinent 02. The 
measurements of RUBIN et al. (25) prove that this 
is true for sodium chloride. 
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APPENDIX 

The Quasi-Harmonic Approximation at Moderate Tem­
peratures and the Debye Model 

At temperatures above hvm/27Tk, where Vm is the 
highest vibrational frequency of the solid, the thermo­
dynamic functions of a quasi-harmonic non-metal are 
represented by their Thirring-Stern expansions(lO) in 
inverse powers of the absolute temperature: 
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Here the Bs are the Bernoulli numbers(26) and 
I-'n = ~ v~/3N is the nth moment of the frequency 

1 
distribution of the 3N normal modes of the solid and 
depends only on its (homogeneous) strain state. The 
expansion of the thermal free energy, whence the other 
expansions follow straightforwardly, is obtained quite 
easily by integration of the Taylor expansion of the 
function d/dx{ln[(l-e-Z )/x]}. and this involves the 
Bernoulli expansion(26) of the function x/(l-e-Z ), which 
converges for Ixl < 211. The region of convergence of 
the Thirring-Stern expansions extends to below gooK 
even for a value of Vm equal to 1013 sec-1. 

Each term of the Thirring-Stern expansions is a 
function of the ratio between the absolute temperature 
and an appropriate (purely strain-dependent) charac­
teristic temperature. We define the characteristic tem­
perature appropriate to the logarithmic term of the 
entropy, 00, and the characteristic temperature for the 
term of the expansions containing the nth moment of the 
frequency distribution, 0 n , as follows: 

eo = exp (~) ~ (II Vj)1/3N 
3 k 1 

(
n+3)1/1I h en = -3- k I-'-ljll/(n = 1,2,4,6, ... ) 

(A.S) 

(A.6) 

This choice of the numerical factors, which are a priori 
arbitrary, ensures that when all these characteristic 
temperatures are taken as equal the expansions (A.l) to 
(A.4) reduce to the well-known Debye expansions. 

For each thermodynamic function there is clearly a 
high-temperature region, generally of different width for 
different functions, where only the leading strain-de­
pendent term of its Thirring-Stern expansion is relevant. 
Thus the correct quasi-harmonic expression coincides 
with the Debye expression at these classical or nearly 
classical temperatures. However, the appropriate Debye 
characteristic temperatures for the entropy and for the 
heat capacity are different (see, for example, Ref. 12) 
and differ also from the one appropriate for the thermal 
energy, being given by 0 0, O2 and 0 1 respectively; 

- ------

on the other hand, the appropriate Debye character­
istic temperatures for the (vibrational and thermal) 
free energies and for the vibrational energy coincide, 
respectively, with those for the entropy and for the 
heat capacity. Numerical values of·these 0s for some 
alkali halides, referred to the volume at OaK and atmo­
spheric pressure, are given in the paper by BARRON 
et al'(21); e.g. for potassium iodide one has 
0 0 = 142·goK, 0 1 = IS2 '9°K and 02 = 162·S°K. 
The experimental Debye temperatures, obtained by 
fitting the appropriate Debye formulae to the measured 
values of the entropy, thermal energy and heat capacity 
of a non-metal, will not actually tend to 0 0, 0 1 and 02 at 
high temperatures, owing to the presence of anharmonic 
contributions. However, while these affect the experi­
mental Debye temperature for the heat capacity by a 
percentage much larger than their fractional weight in 
the heat capacity, as BARRON et al,(21) have dramatically 
illustrated for some alkali halides, they affect the 
experimental Debye temperature for the entropy only 
by a percentage comparable to that fractional weight. 

At lower temperatures, where several strain-depend­
ent terms of the Thirring-Stern expansion of a given 
thermodynamic function are relevant, the Debye tem­
perature appropriate to this function, determined by 
fitting the truncated Debye expansion to the truncated 
Thirring-Stern expansion, will depend explicitly on 
temperature whenever the values of the characteristic 
temperatures pertinent to the relevant terms of the 
Thirring-Stern expansion are numerically different, 
because the relative weights of these terms change with 
temperature. DOMB and SALTER(15) have expressed this 
temperature dependence for the Debye temperature for 
the heat capacity analytically, as an expansion in inverse 
powers of the absolute temperature, and analogous 
expansions can be easily obtained for the Debye tem­
peratures pertinent to the other thermodynamic func­
tions. These expansions are of course different for 
different thermodynamic functions, and should repre­
sent rather accurately the temperature dependence of 
the experimental Debye temperatures for the various 
functions in the region of relatively low temperatures. 
As yet, this has been shown to be the case only for the 
DOMB and SALTER expansion. (21) A final remark, of 
some interest, is that even if the numerical values 
of the characteristic temperatures (A.S) and (A.6) 
pertinent to the relevant terms of the Thirring-Stern 
expansion of a given thermodynamic function are differ­
ent, so long as their strain dependence is the same, the 
function depends only on the ratio between the absolute 
temperature and a unique (purely strain-dependent) 
characteristic temperature, but the dependence on this 
variable is not of the Debye form. 
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